Eclats de vers : Matemat : Différentielles et polynômes
Table des matières
\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)
\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)
\label{chap:diffpoly}
1. Dépendances
- Chapitre \ref{chap:differ} : Les différentielles
2. Polynômes
Soit \(n \in \setN\). Nous allons analyser la différentiabilité du monôme \(\mu : \setR \mapsto \setR\) défini par :
\[\mu : t \mapsto t^n\]
pour tout \(t \in \setR\). La formule de factorisation nous donne :
\[s^n - t^n = (s - t) \sum_{i = 0}^{n - 1} s^i \cdot t^{n - 1 - i}\]
On a donc :
\[\frac{s^n - t^n}{s - t} = \sum_{i = 0}^{n - 1} s^i \cdot t^{n - 1 - i}\]
Passant à la limite \(s \to t\), on obtient :
\[\lim_{ s \to t} \frac{s^n - t^n}{s - t} = \sum_{i = 0}^{n - 1} t^i \cdot t^{n - 1 - i} = \sum_{i = 0}^{n - 1} t^{n - 1} = n \cdot t^{n - 1}\]
On en conclut que la dérivée existe sur \(\setR\) et que :
\[\OD{}{t} (t^n) = \lim_{ s \to t} \frac{s^n - t^n}{s - t} = n \cdot t^{n - 1}\]
La dérivée d'une combinaison linéaire étant identique à la combinaison linéaire des dérivées (voir dérivée d'une somme et la multiplication par une constante), on en conclut que tous les polynômes sont dérivables sur \(\setR\).
2.1. Uniformité
Choisissons \(\alpha,\beta \in \setR\) avec \(\alpha \le \beta\) et analysons la différentiabilité sur l'intervalle \([\alpha,\beta]\). Posons :
\[e(s,t) = \frac{s^n - t^n}{s - t} - \OD{}{t}(t^n)\]
Si \(n = 1\), on a :
\[e(s,t) = \frac{s - t}{s - t} - 1 = 0\]
Le monôme de degré \(1\) est donc uniformément différentiable. Considérons à présent le cas où \(n \ge 2\). Le passage à la limite nous montre que :
\[\OD{}{t} (t^n) = \sum_{i = 0}^{n - 1} t^i \cdot t^{n - 1 - i}\]
En utilisant les propriétés des sommes, on obtient :
\begin{align} e(s,t) &= \sum_{i = 0}^{n - 1} s^i \ t^{n - 1 - i} - \sum_{i = 0}^{n - 1} t^i \ t^{n - 1 - i} \) \( &= \sum_{i = 0}^{n - 1} (s^i - t^i) \ t^{n - 1 - i} \end{align}En factorisant tous les \(s^i - t^i\), on a alors :
\[e(s,t) = \sum_{i = 0}^{n - 1} t^{n - 1 - i} \ (s - t) \ \sum_{k = 0}^{i - 1} s^k \ t^{i - 1 - k}\]
et comme \(s - t\) ne dépend pas de \(i\) :
\[e(s,t) = (s - t) \sum_{i = 0}^{n - 1} t^{n - 1 - i} \ \sum_{k = 0}^{i - 1} s^k \ t^{i - 1 - k}\]
Si on pose \(M = \max \{ \abs{\alpha} , \abs{\beta} \}\), on a clairement \(\abs{s}, \abs{t} \le M\). On peut alors trouver la borne supérieure :
\begin{align} \abs{e(s,t)} &\le \abs{s - t} \sum_{i = 0}^{n - 1} M^{n - 1 - i} \ \sum_{k = 0}^{i - 1} M^{i - 1} \) \( &\le \abs{s - t} \sum_{i = 0}^{n - 1} M^{n - 1 - i} \ i \ M^{i - 1} \) \( &\le \abs{s - t} \ M^{n - 2} \ \sum_{i = 0}^{n - 1} i \) \( &\le \unsur{2} \ \abs{s - t} \ M^{n - 2} \ (n - 1) \ n \end{align}Fixons à présent \(\epsilon \strictsuperieur 0\). Il suffit de prendre :
\[\abs{s - t} \le \delta \le \frac{ 2 \epsilon}{ M^{n - 2} \cdot (n - 1) \cdot n }\]
pour avoir :
\[\abs{e(s,t)} \le \frac{ M^{n - 2} \cdot (n - 1) \cdot n \cdot \delta }{2} \le \epsilon\]
Comme on a :
\[\mu(s) - \mu(t) - \partial \mu(t) = s^n - t^n - n \cdot t^{n - 1} = e(s,t) \cdot (s - t)\]
on dispose de la borne supérieure :
\[\abs{\mu(s) - \mu(t) - \partial \mu(t)} \le \abs{e(s,t)} \cdot \abs{s - t} \le \epsilon \cdot \abs{s - t}\]
Comme le choix de \(\delta\) ne dépend ni de \(s\) ni de \(t\), le monôme \(\mu\) est uniformément différentiable sur \([\alpha,\beta]\).
On généralise aisément à un polynôme quelconque :
\[p(x) = \sum_{i = 0}^n a_i \cdot x^i\]
en constatant que :
\[\abs{p(s) - p(t) - \partial p(t) \cdot (s - t)} \le \abs{s - t} \sum_{i = 0}^n \abs{a_i} \cdot \abs{e_i(s,t)}\]
où \(e_i\) est l'erreur obtenue avec le monôme de degré \(i\). Mais comme on peut trouver des \(\delta_k\) tels que :
\[\abs{e_i(s,t)} \le \frac{\epsilon}{\sum_j \abs{a_j}}\]
il suffit de choisir \(\delta = \min \{ \delta_0, \delta_1, ..., \delta_n \}\) pour avoir :
\[\abs{p(s) - p(t) - \partial p(t) \cdot (s - t)} \le \abs{s - t} \cdot \epsilon \cdot \frac{ \sum_i \abs{a_i} }{ \sum_j \abs{a_j} } = \abs{s - t} \cdot \epsilon\]
Tout polynôme est uniformément différentiable sur des intervalles de la forme \([\alpha,\beta]\). Cette généralisation montre aussi que toute combinaison linéaire de fonctions uniformément différentiables est uniformément différentiable.