Eclats de vers : Matemat : Espaces vectoriels
Table des matières
\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)
\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)
\label{chap:vecteur}
1. Dépendances
- Chapitre \ref{chap:algebre} : Les structures algébriques
- Chapitre \ref{chap:somme} : Les sommes
2. Introduction
Soit un corps \(\corps\), un ensemble quelconque \(A\) et \(n \in \setN\). Le but des espaces vectoriels est de fournir un cadre général aux $n$-tuples de \(\corps^n\) et aux fonctions de \(\corps^A\). Nous avons vu la correspondance \(\corps^n \leftrightarrow \corps^A\) dans le cas particulier où \(A\) possède un nombre fini d'éléments. Mais le lien entre les deux types d'objets ne s'arrête pas là : la comparaison de deux fonctions se base sur le même principe (étendu) que la comparaison de deux $n$-tuples. Nous avons également défini des produits mixtes \(\cdot : \corps \times \corps^n \to \corps^n\) et \(\cdot : \corps \times \corps^A \to \corps^A\) semblables. Les matrices représentant des applications linéaires, nous pouvons également les ajouter dans la liste. Si \(u,v \in E\), avec \(E \in \{ \corps^n , \corps^A , \matrice(\corps,m,n) \}\), on a :
\( \label{eq:mixte} (\alpha \cdot \beta) \cdot u = \alpha \cdot (\beta \cdot u) \)
\( (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x \)
\( \alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v \)
\( 1 \cdot u = 1 \)
pour tout \(\alpha, \beta \in \corps\). De plus l'addition induite sur \(E\) par l'addition de \(\corps\) transforme \(E\) en groupe commutatif. On ne peut toutefois pas parler de corps pour \(E\), car la multiplication matricielle n'est pas une multiplication induite, et est non commutative.
2.1. Attention
Ne pas confondre les additions définies sur \(E\) et \(\corps\), ni la multiplication de \(\corps\) avec la multiplication mixte, ni le neutre de \(E\) avec celui de \(\corps\). Lorsqu'il y a un risque d'ambiguité, on parle du vecteur nul \(0 \in E\) et du scalaire nul \(0 \in \corps\).
3. Définition
Soit un groupe commutatif pour l'addition \(E\), ainsi qu'un corps \(\corps\). Si il existe une opération de multiplication mixte \(\cdot : \corps \times E \mapsto E\) vérifiant les propriétés \ref{eq:mixte} ci-dessus, on dit que \(E\) est un espace vectoriel sur \(\corps\). On nomme alors « vecteurs » les éléments de \(E\) et « scalaires » les éléments de \(\corps\).
3.1. Notation
On note aussi :
\( x - y = x + (-1) \cdot y \)
\( x \cdot \alpha = \alpha \cdot x \)
\( \alpha \cdot \beta \cdot x = (\alpha \cdot \beta) \cdot x \)
\( \alpha x = \alpha \cdot x \)
\( \frac{x}{\alpha} = \alpha^{-1} \cdot x \)
Lorsque \(\alpha\) a un inverse dans \(\corps\), on a même les « fractions » :
\[\frac{x}{\alpha} = \unsur{\alpha} \cdot x\]
3.2. Corollaires
Les propriétés de la multiplication mixte nous montrent directement que :
\( 0 \cdot u = (1 - 1) \cdot u = u - u = 0 \)
\( \alpha \cdot 0 = \alpha \cdot (u - u) = \alpha - \alpha = 0 \)
3.3. Remarque
Le corps \(\corps\) est souvent \(\setR\) ou \(\setC\).
4. Sous-espace
On dit que \(F \subseteq E\) est un sous-espace vectoriel de \(E\) si \(0 \in F\) et si :
\[z = \alpha \cdot x + \beta \cdot y\]
appartient à \(F\) quels que soient les vecteurs \(x,y \in F\) et les scalaires \(\alpha,\beta \in \corps\).
On vérifie par exemple que \(E\) est un sous-espace vectoriel de lui-même.
5. Espace engendré
L'espace engendré par les vecteurs \(e_1,e_2,...,e_n \in E\) est l'ensemble des combinaisons linéaires formées à partir des \(e_i\) :
\[\combilin{e_1,...,e_n} = \left\{ \sum_{i=1}^{n} \alpha_i \cdot e_i : \alpha_i \in \corps \right\}\]
On vérifie que \(\combilin{e_1,...,e_n}\) est un sous-espace vectoriel de \(E\).
5.1. Remarque
Les espaces vectoriels ne pouvant pas s'exprimer comme ci-dessus sont dit de dimension infinie.
6. Indépendance linéaire
On dit qu'une série de vecteurs \(e_1,...,e_n\) est linéairement indépendante si pour toute suite de scalaires \(\alpha_i\), la condition :
\[\sum_{i=1}^{n} \alpha_i \cdot e_i = 0\]
implique que tous les scalaires soient nuls :
\[\alpha_i = 0\]
pour tout \(i \in \{1,2,...,n\}\).
7. Coordonnées
Soit les vecteurs linéairement indépendants \((e_1,...,e_n)\) et \(x \in \combilin{e_1,...,e_n}\). On peut trouver une suite de scalaire \(\alpha_i\) tels que :
\[x = \sum_{i = 1}^n \alpha_i \cdot e_i\]
Supposons que l'on ait également :
\[x = \sum_{i=1}^n \beta_i \cdot e_i\]
pour une autre suite de scalaires \(\beta_i\). En soustrayant les deux équations, on obtient :
\[\sum_{i=1}^n (\alpha_i - \beta_i) \cdot e_i = 0\]
L'indépendance linéaire des \(e_i\) implique alors que \(\alpha_i - \beta_i = 0\), c'est-à-dire :
\[\alpha_i = \beta_i\]
pour tout \(i \in \{1,2,...,n\}\).
On a donc unicité des coefficients scalaire de la combinaison linéaire. On dit que les \(\alpha_i\) sont les coordonnées de \(x\) par rapport aux \((e_1,...,e_n)\).
7.1. Base
Par contre, l'existence de telles coordonnées n'est pas garantie pour tout \(x \in E\). Ce ne sera le cas que si :
\[E \subseteq \combilin{e_1,...,e_n}\]
On dit alors que \((e_1,...,e_n)\) forme une base de \(E\).
7.2. Dimension finie
On dit qu'un espace vectoriel \(E\) est de dimension finie s'il posséde au moins une base de la forme \((e_1,...,e_n)\), où \(n \in \setN\) est fini. Dans le cas où \(E\) {\em ne possède pas} une telle base, il est dit de dimension infinie.
7.3. Equivalence
On voit qu'étant donné une base de \(E\), il y a équivalence entre un vecteur \(x \in E\) et un élément \((x_1,x_2,...,x_n) \in \corps^n\) formé par ses coordonnées.
Nous noterons donc également (et abusivement) \(x = (x_1,x_2,...,x_n)\), mais attention : il ne faut jamais perdre de vue que les \(x_i\) dépendent de la base utilisée. Le vecteur \(x\) est lui invariant sous changement de base.
8. Absence de redondance
Soit \(e_1,...,e_n \in E\) une suite de vecteurs linéairement indépendants. Soit \(i \in \{ 1,2,...,n \}\) et :
\[J(i) = \setZ(0,n) \setminus \{ i \}\]
Supposons que le vecteur \(e_i\) soit une combinaison des autres vecteurs :
\[e_i = \sum_{ j \in J(i) } \alpha_j \cdot e_j\]
On a donc :
\[e_i - \sum_{ j \in J(i) } \alpha_j \cdot e_j = 0\]
L'hypothèse d'indépendance linéaire voudrait que tous les \(\alpha_j\) et le \(\alpha_i\) soient nuls. Ce qui n'est manifestement pas le cas puisque \(\alpha_i = 1 \ne 0\) !
Aucun des vecteurs de la suite n'est donc combinaison des autres. On dit qu'aucun vecteur n'est redondant dans la suite.
9. Base canonique sur \(\corps^n\)
Soit \(\corps \in \{ \setR, \setC \}\). On note \(\canonique_i\) l'élément de \(\corps^n\) ayant un \(1\) en \(i^{ème}\) position et des \(0\) partout ailleurs. On a donc :
\begin{align} \canonique_1 &= (1,0,...,0) \) \( \canonique_2 &= (0,1,0,...,0) \) \( &\vdots& \) \( \canonique_n &= (0,...,0,1) \end{align}On a alors, pour tout \(x = (x_1,...,x_n) \in \corps^n\) :
\[x = \sum_{i = 1}^n x_i \cdot \canonique_i\]
10. Représentation matricielle
On représente généralement les vecteurs de \(\corps^n\) par des vecteurs lignes ou colonnes. On parle alors de « vecteurs matriciels ». Le \(i^{ème}\) vecteur de la base canonique est défini par le vecteur colonne :
\( \canoniquei = ( \indicatriceij )j =
\begin{Matrix}{c} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{Matrix}\)
soit :
\( \canonique_1 = [1 \ 0 \ \hdots \ 0]^T \)
\( \canonique_2 = [0 \ 1 \ \hdots \ 0]^T \)
\( \vdots \)
\( \canonique_n = [0 \ \hdots \ 0 \ 1]^T \)