Eclats de vers : Matemat : Intervalles de réels

Index des Grimoires

Retour à l’accueil

Table des matières

\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)

\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)

\label{chap:intervallesDeReels}

1. Dépendances

  • Chapitre \ref{chap:reel} : Les nombres réels

2. Intervalles bornés

Soit \(a,b \in \setR\) avec \(a \le b\). L'intervalle fermé \([a,b]\) est défini par :

\[[a,b] = \{ x \in \setR : a \le x \le b \}\]

L'intervalle ouvert \(\intervalleouvert{a}{b}\) est défini par :

\[\intervalleouvert{a}{b} \ = \{ x \in \setR : a \strictinferieur x \strictinferieur b \}\]

On recontre aussi les intervalles semi-ouverts à gauche :

\[\intervallesemiouvertgauche{a}{b} = \{ x \in \setR : a \strictinferieur x \le b \}\]

ou à droite :

\[\intervallesemiouvertdroite{a}{b} \ = \{ x \in \setR : a \le x \strictinferieur b \}\]

3. Intervalles non bornés

Soit \(a \in \setR\). Les intervalles non bornés sont des intervalles partant de l'infini négatif ou/et allant jusqu'à l'infini positif :

\begin{align} \intervallesemiouvertdroite{a}{+\infty} &= \{ x \in \setR : x \ge a \} \\ \intervalleouvert{a}{+\infty} &= \{ x \in \setR : x \strictsuperieur a \} \\ \intervallesemiouvertgauche{-\infty}{a} &= \{ x \in \setR : x \le a \} \\ \intervalleouvert{-\infty}{a} &= \{ x \in \setR : x \strictinferieur a \} \\ \intervalleouvert{-\infty}{+\infty} &= \setR \end{align}

4. Boules

Soit \(c,r,x \in \setR\) avec \(r \ge 0\). La condition \(\abs{x - c} \le r\) est équivalente à \(x - c \le r\) et \(-(x - c) = c - x \le r\). On en déduit que :

\( x \le c + r \)

\( x \ge c - r \)

ce qui revient à dire que \(x \in [c - r, c + r]\). Nous obtenons un résultat analogue avec les inégalités strictes. On peut donc exprimer les boules en terme d'intervalles :

\begin{align} \boule[c,r] &= [c - r, c + r] \\ \boule(c,r) &= \ \intervalleouvert{c - r}{c + r} \end{align}

On peut inverser ces relations et exprimer certains intervalles en termes de boules. Soit \(a = c - r\) et \(b = c + r\). On a alors \(a \le b\) et :

\( a + b = c - r + c + r = 2 c \)

\( b - a = c + r - c + r = 2 r \)

On en déduit que :

\begin{align} [a,b] &= \boule\left[\frac{a + b}{2},\frac{b - a}{2}\right] \\ \\ \intervalleouvert{a}{b} &= \boule\left(\frac{a + b}{2},\frac{b - a}{2}\right) \end{align}

5. Majorants et minorants

Soit \(a,b \in \setR\) avec \(a \le b\) et \(x \in \setR\).

Pour que \(x \ge [a,b]\), il faut que \(x \ge b\). Si \(y \in [a,b]\), on aura alors \(x \ge b \ge y\) d'où \(x \ge y\) par transitivité de l'ordre. On en déduit que :

\[\major [a,b] = \intervallesemiouvertgauche{b}{+\infty}\]

On obtient le même résultat pour l'intervalle ouvert :

\[\major \intervalleouvert{a}{b} = \intervallesemiouvertgauche{b}{+\infty}\]

ainsi que pour les intervalles semi-ouverts.

Pour que \(x \le [a,b]\), il faut que \(x \le a\). Si \(y \in [a,b]\), on aura alors \(x \le a \le y\) d'où \(x \le y\) par transitivité de l'ordre. On en déduit que :

\[\minor [a,b] = \intervallesemiouvertdroite{-\infty}{a}\]

On obtient le même résultat pour l'intervalle ouvert :

\[\minor \intervalleouvert{a}{b} = \intervallesemiouvertdroite{-\infty}{a}\]

ainsi que pour les intervalles semi-ouverts.

6. Maximum et minimum

Soit \(a,b \in \setR\) avec \(a \le b\). On a clairement :

\begin{align} \max [a,b] &= \max \intervallesemiouvertgauche{a}{b} = \max \intervallesemiouvertgauche{-\infty}{b} = b \\ \min [a,b] &= \min \intervallesemiouvertdroite{a}{b} = \min \intervallesemiouvertdroite{a}{+\infty} \ = a \end{align}

Les autre types d'intervalles n'admettent ni maximum ni minimum.

7. Supremum et infimum

Dans le cas où le maximum de l'intervalle \(I\) existe, on a \(\sup I = \max I\). Dans les autres cas, on a par exemple :

\[\sup \intervalleouvert{a}{b} = \min \major \intervalleouvert{a}{b} = \min [b, +\infty[ \ = b\]

et le même résultat pour les intervalles semi-ouverts.

Dans le cas où le minimum de l'intervalle \(I\) existe, on a \(\inf I = \min I\). Dans les autres cas, on a par exemple :

\[\inf \intervalleouvert{a}{b} = \max \minor \intervalleouvert{a}{b} = \max \ ]-\infty, a] = a\]

et le même résultat pour les intervalles semi-ouverts.

8. Adhérence, intérieur et frontière

On peut vérifier que :

\begin{align} \adh [a,b] &= \adh \intervalleouvert{a}{b} = [a,b] \\ \interieur [a,b] &= \interieur \intervalleouvert{a}{b} = \ ]a,b[ \end{align}

et ainsi de suite. La frontière est donc simplement :

\[\partial [a,b] = \partial \intervalleouvert{a}{b} = \{a,b\}\]

Auteur: chimay

Created: 2025-10-21 mar 15:52

Validate