Eclats de vers : Matemat : Mesures

Index des Grimoires

Retour à l’accueil

Table des matières

\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)

\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)

\label{chap:mesure}

1. Dépendances

  • Chapitre \ref{chap:ensemble} : Les ensembles
  • Chapitre \ref{chap:ordre} : Les ordres et extréma
  • Chapitre \ref{chap:fonction} : Les fonctions

2. Introduction

L'objectif des mesures est de « mesurer » des ensembles, ou plutôt des sous-ensembles d'un ensemble donné. Soit l'ensemble \(\Omega\) et une tribu de sous-ensembles \(\mathcal{T} \subseteq \sousens(\Omega)\). Une mesure sur \(\mathcal{T}\) est une fonction \(\mu : \mathcal{T} \mapsto \setR\) associant une valeur réelle à chaque ensemble de la tribu. On demande que cette mesure soit positive :

\[\mu(A) \ge 0\]

pour tout \(A \in \mathcal{T}\). Il semble également logique que la mesure d'un ensemble vide soit nulle :

\[\mu(\emptyset) = 0\]

Pour toute suite discrète (finie ou infinie) \(\{ A_1,A_2,... \} \subseteq \mathcal{T}\) d'ensembles disjoints deux à deux, on a :

\[A_i \cap A_j = \emptyset\]

pour tout \((i,j)\) tels que \(i \ne j\). On exige dans ce cas que la mesure vérifie la propriété d'additivité :

\[\mu\left( \bigcup_i A_i \right) = \sum_i \mu(A_i)\]

2.1. Inclusion

Soit \(A,B \in \mathcal{T}\) avec \(A \subseteq B\). Comme \(C = B \setminus A\) et \(A\) vérifient \(C \cup A = B\) et \(C \cap A = \emptyset\), on a :

\[\mu(B) = \mu(C) + \mu(A) \ge \mu(A)\]

La mesure d'un ensemble « plus petit » au sens de l'inclusion est donc plus petite :

\[\mu(A) \le \mu(B)\]

2.2. Union

Soit \(A,B \in \mathcal{T}\). Comme \(A \cup B = (A \setminus B) \cup B\) et \((A \setminus B) \cap B = \emptyset\), on a :

\[\mu(A \cup B) = \mu(A \setminus B) + \mu(B)\]

Comme \(A \setminus B \subseteq A\), on a aussi \(\mu(A \setminus B) \le \mu(A)\). On en déduit que :

\[\mu(A \cup B) \le \mu(A) + \mu(B)\]

On peut en conclure par récurrence que :

\[\mu\left( \bigcup_{i = 0}^n A_i \right) \le \sum_{i = 0}^n \mu(A_i)\]

Puis, par passage à la limite :

\[\mu\left( \bigcup_{i = 0}^{+\infty} A_i \right) \le \sum_{i = 0}^{+\infty} \mu(A_i)\]

2.3. Appellation

On dit qu'un ensemble \(A\) est mesurable (pour \(\mu\)) si \(A \in \mathcal{T}\). Dans la suite, nous considérons une mesure \(\mu : \mathcal{T} \mapsto \setR\) et un ensemble mesurable \(A \in \mathcal{T}\).

3. Lebesgue

La mesure de Lebesgue \(\mu_L\) est définie sur la tribu \(\mathcal{T}\) engendrée par les ensembles ouverts de \(\setR\). Elle exprime simplement la longueur d'un intervalle. Pour tout :

\[I \in \big\{ \ [a,b], \intervalleouvert{a}{b}, \intervallesemiouvertgauche{a}{b}, \intervallesemiouvertdroite{a}{b} \big\}\]

on a simplement :

\[\mu_L(I) = b - a\]

Soit \(\mathfrak{J}\) l'ensemble des collections au plus dénombrables d'intervalles ouverts disjoints. Pour tout \(A \in \mathcal{T}\), on définit :

\[\mu_I(A) = \inf \accolades{ \sum_{n \in N} \mu_L(I_n) : \{ I_n : n \in N \subseteq \setN \} \in \mathfrak{J} , \ A \subseteq \bigcup_{n \in N} I_n}\]

et :

\[\mu^S(A) = \sup \accolades{ \sum_{n \in N} \mu_L(I_n) : \{ I_n : n \in N \subseteq \setN \} \in \mathfrak{J} , \ \bigcup_{n \in N} I_n \subseteq A }\]

Si :

\[\mu_I(A) = \mu^S(A)\]

on dit que l'ensemble \(A\) est mesurable au sens de Lebesgue et on définit :

\[\mu_L(A) = \mu_I(A) = \mu^S(A)\]

3.1. Mesure nulle

Pour tout ensemble \(N\) inclus dans un ensemble \(A \in \mathcal{T}\) de mesure nulle :

\[\mu_L(A) = 0\]

on définit :

\[\mu_L(N) = 0\]

3.2. Singleton

On voit que les ensembles de la forme \(\{a\} = [a,a]\) sont de mesure nulle :

\[\mu_L(\{a\}) = a - a = 0\]

On en conclut que pour toute suite discrète de réels $a1,a2,…$, on a :

\[\mu_L(\{a_1,a_2,...\}) = \sum_i \mu_L(\{a_i\}) = 0\]

On a aussi :

\begin{align} b - a = \mu_L([a,b]) &= \mu_L([a,b] \setminus \{a_1,a_2,...\}) + \mu_L(\{a_1,a_2,...\}) \) \( &= \mu_L([a,b] \setminus \{a_1,a_2,...\}) + 0 \end{align}

et donc :

\[\mu_L([a,b] \setminus \{a_1,a_2,...\}) = b - a\]

4. Mesure de Stieltjes

On associe à toute fonction croissante \(g : \setR \mapsto \setR\) une mesure de Stieltjes \(\mu_g\). Pour tout :

\[I \in \big\{ \ [a,b], \intervalleouvert{a}{b}, \intervallesemiouvertgauche{a}{b}, \intervallesemiouvertdroite{a}{b} \big\}\]

on définit :

\[\mu_g(I) = g(b) - g(a)\]

Soit \(\mathfrak{J}\) l'ensemble des collections au plus dénombrables d'intervalles ouverts disjoints. Pour tout \(A \in \mathcal{T}\), on définit :

\[\mu_g(A) = \inf \accolades{ \sum_{n \in N} \mu_L(I_n) : \{ I_n : n \in N \subseteq \setN \} \in \mathfrak{J} , \ A \subseteq \bigcup_{n \in N} I_n}\]

4.1. Mesure nulle

Pour tout ensemble \(N\) inclus dans un ensemble \(A \in \mathcal{T}\) de mesure nulle :

\[\mu_g(A) = 0\]

on définit :

\[\mu_g(N) = 0\]

5. Dirac

La mesure de Dirac \(\mu_D^a\) en \(a\) est définie sur \(\sousens(\Omega)\). Il s'agit d'une mesure permettant de détecter si un \(A \subseteq \Omega\) donné contient \(a\). Elle est donc basée sur les fonctions indicatrices :

\( μDa(A) = \indicatriceA(a) =

\begin{cases} 1 & \mbox{ si } a \in A \) \( 0 & \mbox{ si } a \notin A \end{cases}

\)

6. Mesure produit

Soit les tribus \(\mathcal{T}_1\) et \(\mathcal{T}_2\) et la tribu produit :

\[\mathcal{P} = \{ A \times B : A \in \mathcal{T}_1, \ B \in \mathcal{T}_2 \}\]

A partir de mesures \(\mu : \mathcal{T}_1 \mapsto \setR\) et \(\nu : \mathcal{T}_2 \mapsto \setR\), on peut construire une mesure produit \(\mu \otimes \nu : \mathcal{P} \mapsto \setR\) par :

\[(\mu \otimes \nu)(A \times B) = \mu(A) \cdot \nu(B)\]

6.1. Dimension \(n\)

On généralise la mesure de Lebesgue sur \(\setR^n\) par :

\[\mu_L( \intervalleouvert{a_1}{b_1} \times \intervalleouvert{a_2}{b_2} ... \times \intervalleouvert{a_n}{b_n}) = \prod_{i = 1}^n (b_i - a_i)\]

et l'extension à la tribu engendrée par les ouverts de \(\setR^n\) au moyen des supremum et infimum.

7. Fonction mesurable

On dit qu'une fonction \(f : A \mapsto \setR\) est mesurable (au sens de la tribu \(\mathcal{T}\)) si la relation \(f^{-1}\) vérifie \(f^{-1}(]a,+\infty[) \in \mathcal{T}\) et \(f^{-1}(]-\infty,a[) \in \mathcal{T}\) pour tout \(a \in \setR\). On a donc :

\( \{ x \in A : f(x) \strictsuperieur a \} \in \mathcal{T} \)

\( \{ x \in A : f(x) \strictinferieur a \} \in \mathcal{T} \)

7.1. Corollaires

On a :

\( \{ x \in A : f(x) \ge a \} = A \setminus \{ x \in A : f(x) \strictinferieur a \} \in \mathcal{T} \)

\( \{ x \in A : f(x) \le a \} = A \setminus \{ x \in A : f(x) \strictsuperieur a \} \in \mathcal{T} \)

et :

\[\{ x \in A : f(x) = a \} = \{ x \in A : f(x) \ge a \} \cap \{ x \in A : f(x) \le a \} \in \mathcal{T}\]

Les mesures de tous ces ensembles sont donc bien définies pour tout \(a \in \setR\).

8. Opposé d'une fonction mesurable

Soit une fonction mesurable \(f : A \mapsto \setR\). On a :

\( \{ x \in A : -f(x) \strictsuperieur a \} = \{ x \in A : f(x) \strictinferieur -a \} \in \mathcal{T} \)

\( \{ x \in A : -f(x) \strictinferieur a \} = \{ x \in A : f(x) \strictsuperieur -a \} \in \mathcal{T} \)

On en déduit que la fonction opposée \(-f\) est mesurable.

9. Fonctions extrema

Soit la suite \(\{ f_n : n \in \setN \}\) de fonctions mesurables. Posons :

\( S = \sup \{ f_n : n \in \setN \} \)

\( I = \inf \{ f_n : n \in \setN \} \)

On a :

\( \{ x \in A : S(x) \strictsuperieur a \} = \bigcup_n \{ x \in A : f_n(x) \strictsuperieur a \} \in \mathcal{T} \)

\( \{ x \in A : S(x) \strictinferieur a \} = \bigcap_n \{ x \in A : f_n(x) \strictinferieur a \} \in \mathcal{T} \)

On en conclut que \(\sup_n f_n\) est mesurable. Symétriquement, on a :

\( \{ x \in A : I(x) \strictsuperieur a \} = \bigcap_n \{ x \in A : f_n(x) \strictsuperieur a \} \in \mathcal{T} \)

\( \{ x \in A : I(x) \strictinferieur a \} = \bigcup_n \{ x \in A : f_n(x) \strictinferieur a \} \in \mathcal{T} \)

On en conclut que \(\inf_n f_n\) est mesurable.

Auteur: chimay

Created: 2025-10-21 mar 15:52

Validate