Eclats de vers : Matemat : Théorie spectrale
Table des matières
\( \newcommand{\parentheses}[1]{\left(#1\right)} \newcommand{\crochets}[1]{\left[#1\right]} \newcommand{\accolades}[1]{\left\{#1\right\}} \newcommand{\ensemble}[1]{\left\{#1\right\}} \newcommand{\identite}{\mathrm{Id}} \newcommand{\indicatrice}{\boldsymbol{\delta}} \newcommand{\dirac}{\delta} \newcommand{\moinsun}{{-1}} \newcommand{\inverse}{\ddagger} \newcommand{\pinverse}{\dagger} \newcommand{\topologie}{\mathfrak{T}} \newcommand{\ferme}{\mathfrak{F}} \newcommand{\img}{\mathbf{i}} \newcommand{\binome}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\canonique}{\mathfrak{c}} \newcommand{\tenseuridentite}{\boldsymbol{\mathcal{I}}} \newcommand{\permutation}{\boldsymbol{\epsilon}} \newcommand{\matriceZero}{\mathfrak{0}} \newcommand{\matriceUn}{\mathfrak{1}} \newcommand{\christoffel}[2]{ \left\{ \begin{array}{c} #1 \\ #2 \\ \end{array} \right\} } \newcommand{\lagrangien}{\mathfrak{L}} \newcommand{\sousens}{\mathfrak{P}} \newcommand{\partition}{\mathrm{Partition}} \newcommand{\tribu}{\mathrm{Tribu}} \newcommand{\topologies}{\mathrm{Topo}} \newcommand{\setB}{\mathbb{B}} \newcommand{\setN}{\mathbb{N}} \newcommand{\setZ}{\mathbb{Z}} \newcommand{\setQ}{\mathbb{Q}} \newcommand{\setR}{\mathbb{R}} \newcommand{\setC}{\mathbb{C}} \newcommand{\corps}{\mathbb{K}} \newcommand{\boule}{\mathfrak{B}} \newcommand{\intervalleouvert}[2]{\left] #1 , #2 \right[} \newcommand{\intervallesemiouvertgauche}[2]{ \left] #1 , #2 \right]} \newcommand{\intervallesemiouvertdroite}[2]{\left[ #1 , #2 \right[ } \newcommand{\fonction}{\mathbb{F}} \newcommand{\bijection}{\mathrm{Bij}} \newcommand{\polynome}{\mathrm{Poly}} \newcommand{\lineaire}{\mathrm{Lin}} \newcommand{\continue}{\mathrm{Cont}} \newcommand{\homeomorphisme}{\mathrm{Hom}} \newcommand{\etagee}{\mathrm{Etagee}} \newcommand{\lebesgue}{\mathrm{Leb}} \newcommand{\lipschitz}{\mathrm{Lip}} \newcommand{\suitek}{\mathrm{Suite}} \newcommand{\matrice}{\mathbb{M}} \newcommand{\krylov}{\mathrm{Krylov}} \newcommand{\tenseur}{\mathbb{T}} \newcommand{\essentiel}{\mathfrak{E}} \newcommand{\relation}{\mathrm{Rel}} \DeclareMathOperator*{\strictinferieur}{\ < \ } \DeclareMathOperator*{\strictsuperieur}{\ > \ } \DeclareMathOperator*{\ensinferieur}{\eqslantless} \DeclareMathOperator*{\enssuperieur}{\eqslantgtr} \DeclareMathOperator*{\esssuperieur}{\gtrsim} \DeclareMathOperator*{\essinferieur}{\lesssim} \newcommand{\essegal}{\eqsim} \newcommand{\union}{\ \cup \ } \newcommand{\intersection}{\ \cap \ } \newcommand{\opera}{\divideontimes} \newcommand{\autreaddition}{\boxplus} \newcommand{\autremultiplication}{\circledast} \newcommand{\commutateur}[2]{\left[ #1 , #2 \right]} \newcommand{\convolution}{\circledcirc} \newcommand{\correlation}{\ \natural \ } \newcommand{\diventiere}{\div} \newcommand{\modulo}{\bmod} \DeclareMathOperator*{\pgcd}{pgcd} \DeclareMathOperator*{\ppcm}{ppcm} \newcommand{\produitscalaire}[2]{\left\langle #1 \vert #2 \right\rangle} \newcommand{\scalaire}[2]{\left\langle #1 \| #2 \right\rangle} \newcommand{\braket}[3]{\left\langle #1 \vert #2 \vert #3 \right\rangle} \newcommand{\orthogonal}{\bot} \newcommand{\forme}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\biforme}[3]{\left\langle #1 , #2 , #3 \right\rangle} \newcommand{\contraction}[3]{\left\langle #1 \odot #3 \right\rangle_{#2}} \newcommand{\dblecont}[5]{\left\langle #1 \vert #3 \vert #5 \right\rangle_{#2,#4}} \DeclareMathOperator*{\major}{major} \DeclareMathOperator*{\minor}{minor} \DeclareMathOperator*{\maxim}{maxim} \DeclareMathOperator*{\minim}{minim} \DeclareMathOperator*{\argument}{arg} \DeclareMathOperator*{\argmin}{arg\ min} \DeclareMathOperator*{\argmax}{arg\ max} \DeclareMathOperator*{\supessentiel}{ess\ sup} \DeclareMathOperator*{\infessentiel}{ess\ inf} \newcommand{\dual}{\star} \newcommand{\distance}{\mathfrak{dist}} \newcommand{\norme}[1]{\left\| #1 \right\|} \newcommand{\normetrois}[1]{\left|\left\| #1 \right\|\right|} \DeclareMathOperator*{\adh}{adh} \DeclareMathOperator*{\interieur}{int} \newcommand{\frontiere}{\partial} \DeclareMathOperator*{\image}{im} \DeclareMathOperator*{\domaine}{dom} \DeclareMathOperator*{\noyau}{ker} \DeclareMathOperator*{\support}{supp} \DeclareMathOperator*{\signe}{sign} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\unsur}[1]{\frac{1}{#1}} \newcommand{\arrondisup}[1]{\lceil #1 \rceil} \newcommand{\arrondiinf}[1]{\lfloor #1 \rfloor} \DeclareMathOperator*{\conjugue}{conj} \newcommand{\conjaccent}[1]{\overline{#1}} \DeclareMathOperator*{\division}{division} \newcommand{\difference}{\boldsymbol{\Delta}} \newcommand{\differentielle}[2]{\mathfrak{D}^{#1}_{#2}} \newcommand{\OD}[2]{\frac{d #1}{d #2}} \newcommand{\OOD}[2]{\frac{d^2 #1}{d #2^2}} \newcommand{\NOD}[3]{\frac{d^{#3} #1}{d #2^{#3}}} \newcommand{\deriveepartielle}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\PD}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dblederiveepartielle}[2]{\frac{\partial^2 #1}{\partial #2 \partial #2}} \newcommand{\dfdxdy}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}} \newcommand{\dfdxdx}[2]{\frac{\partial^2 #1}{\partial #2^2}} \newcommand{\gradient}{\mathbf{\nabla}} \newcommand{\combilin}[1]{\mathrm{span}\{ #1 \}} \DeclareMathOperator*{\trace}{tr} \newcommand{\proba}{\mathbb{P}} \newcommand{\probaof}[1]{\mathbb{P}\left[#1\right]} \newcommand{\esperof}[1]{\mathbb{E}\left[#1\right]} \newcommand{\cov}[2]{\mathrm{cov} \left( #1 , #2 \right) } \newcommand{\var}[1]{\mathrm{var} \left( #1 \right) } \newcommand{\rand}{\mathrm{rand}} \newcommand{\variation}[1]{\left\langle #1 \right\rangle} \DeclareMathOperator*{\composante}{comp} \DeclareMathOperator*{\bloc}{bloc} \DeclareMathOperator*{\ligne}{ligne} \DeclareMathOperator*{\colonne}{colonne} \DeclareMathOperator*{\diagonale}{diag} \newcommand{\matelementaire}{\mathrm{Elem}} \DeclareMathOperator*{\matpermutation}{permut} \newcommand{\matunitaire}{\mathrm{Unitaire}} \newcommand{\gaussjordan}{\mathrm{GaussJordan}} \newcommand{\householder}{\mathrm{Householder}} \DeclareMathOperator*{\rang}{rang} \newcommand{\schur}{\mathrm{Schur}} \newcommand{\singuliere}{\mathrm{DVS}} \newcommand{\convexe}{\mathrm{Convexe}} \newcommand{\petito}[1]{o\left(#1\right)} \newcommand{\grando}[1]{O\left(#1\right)} \)
\( \newenvironment{Eqts} { \begin{equation*} \begin{gathered} } { \end{gathered} \end{equation*} } \newenvironment{Matrix} {\left[ \begin{array}} {\end{array} \right]} \)
\label{spectral}
1. Progression géométrique
Soit un espace de Hilbert \(H\) et une application linéaire \(A : H \mapsto H\). On voit que :
\begin{align} \sum_{k = 0}^n A^k &= \identite + A + A^2 + ... + A^n \) \( A \circ \sum_{k = 0}^n A^k &= A + A^2 + A^3 + ... + A^{n + 1} \end{align}En soustrayant ces deux équations, on obtient :
\[(\identite - A) \circ \sum_{k = 0}^n A^k = \identite - A^{n + 1}\]
On montre de même que :
\[\left[ \sum_{k = 0}^n A^k \right] \circ (\identite - A) = \identite - A^{n + 1}\]
1.1. Infinie
Si \(\norme{A} \strictinferieur 1\), on a \(\norme{A^n} \le \norme{A}^n \to 0\) lorsque \(n \to \infty\) et donc \(A^n \to 0\). On en déduit que :
\[(\identite - A) \circ \sum_{k = 0}^{+\infty} A^k = \lim_{n \to \infty} (\identite - A^{n + 1}) = \identite\]
On a aussi :
\[\left[ \sum_{k = 0}^{+\infty} A^k \right] \circ (\identite - A) = \identite\]
On en déduit que :
\[(\identite - A)^{-1} = \sum_{k = 0}^{+\infty} A^k\]
2. Convergence
Soit une application linéaire continue \(A : H \mapsto H\). Choisissons \(\lambda \in \setC\) tel que \(\norme{A} \strictinferieur \abs{\lambda}\). On a :
\[\norme{A^k} \le \norme{A}^k \strictinferieur \abs{\lambda}^k\]
Posons \(r = \norme{A} / \abs{\lambda} \strictinferieur 1\) et divisons par le module de \(\lambda\) puissance \(k\) :
\[\frac{ \norme{A^k} }{ \abs{\lambda}^k } \le \frac{ \norme{A}^k }{ \abs{\lambda}^k } = r^k \strictinferieur 1\]
On en déduit que :
\[\sum_{k = 0}^n \frac{ \norme{A^k} }{ \abs{\lambda}^k } \le \sum_{k = 0}^n r^k = \frac{1 - r^k}{1 - r} \le \unsur{1 - r}\]
La suite des :
\[S_n = \sum_{k = 0}^n \frac{ \norme{A^k} }{ \abs{\lambda}^k }\]
étant croissante et bornée, elle converge vers son supremum :
\[S = \sum_{k = 0}^{+\infty} \frac{ \norme{A^k} }{ \abs{\lambda}^k } = \lim_{n \to \infty} S_n = \sup_{n \in \setN} S_n\]
Soit \(x \in H\) et la suite définie par \(u_0 = x\) et :
\[u_n = \sum_{k = 0}^n \unsur{\lambda^k} \cdot A^k(x)\]
Pour tout \(m,n \in \setN\) avec \(m \ge n\), on a :
\[\norme{u_m - u_n} = \norme{\sum_{k = n + 1}^m \unsur{\lambda^k} \cdot A^k(x)} \le \sum_{k = n + 1}^m \frac{ \norme{A^k(x)} }{ \abs{\lambda}^k }\]
Majorons par la norme de \(A^k\), puis la norme de \(A\) puissance \(k\) :
\[\norme{u_m - u_n} \le \left[ \sum_{k = n + 1}^m \frac{ \norme{A^k} }{ \abs{\lambda}^k } \right] \cdot \norme{x} \le \left[ \sum_{k = n + 1}^m \frac{ \norme{A}^k }{ \abs{\lambda}^k } \right] \cdot \norme{x}\]
et effectuons le changement de variable \(i = k - (n + 1)\). Il vient :
\[\norme{u_m - u_n} \le \frac{ \norme{A}^{n + 1} }{ \abs{\lambda}^{n + 1} } \left[ \sum_{i = 0}^{m - n - 1} \frac{ \norme{A}^i }{ \abs{\lambda}^i } \right] \cdot \norme{x} = r^{n + 1} \cdot S_{m - n - 1} \cdot \norme{x}\]
Mais comme \(S_{m - n - 1} \le S\), on a finalement :
\[\norme{u_m - u_n} \le r^{n + 1} \cdot S \cdot \norme{x}\]
qui converge vers \(0\) lorsque \(n \to \infty\). La suite des \(u_n\) est donc de Cauchy et converge vers un certain \(L(x) \in H\), ce qui définit l'application \(L : H \mapsto H\), que l'on note :
\[L = \sum_{k = 0}^{+\infty} \unsur{\lambda^k} \cdot A^k\]
2.1. Continuité
Cette application est de norme finie et donc continue car pour tout \(n \in \setN\) :
\[\norme{u_n} \le \left[ \sum_{k = 0}^n \frac{ \norme{A}^k }{ \abs{\lambda}^k } \right] \cdot \norme{x} = \frac{ 1 - r^{n + 1} }{1 - r} \cdot \norme{x} \le \frac{\norme{x}}{1 - r}\]
On a donc :
\[\norme{L(x)} = \lim_{n \to \infty} \norme{u_n} \le \frac{\norme{x}}{1 - r}\]
d'où :
\[\norme{L} \le \unsur{1 - r}\]
2.2. Inverse
Comme l'application \(B = A / \lambda\) vérifie \(\norme{B} \strictinferieur 1\), on a :
\( (\lambda \cdot \identite - A) \circ (\unsur{\lambda} \cdot L) = (\identite - \unsur{\lambda} \cdot A) \circ L = \identite \)
\( (\unsur{\lambda} \cdot L) \circ (\lambda \cdot \identite - A) = L \circ (\identite - \unsur{\lambda} \cdot A) = \identite \)
et donc :
\[(\lambda \cdot \identite - A)^{-1} = \unsur{\lambda} \cdot L\]
3. Exponentielle
Soit une application linéaire continue \(A : H \mapsto H\). Sous réserve de convergence, on définit l'opérateur \(\exp(A)\) associé par :
\[\exp(A) = \sum_{k = 0}^{+\infty} \unsur{k !} \cdot A^k\]
On a donc :
\[\exp(A)(u) = \sum_{k = 0}^{+\infty} \unsur{k !} \cdot A^k(u)\]
pour tout \(u \in H\).